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Abstract

As JavaScript has become virtually omnipresent as the lan-
guage for programming large and complex web applica-
tions in the last several years, we have seen an increase
in interest in finding data races in client-side JavaScript.
While JavaScript execution is single-threaded, there is still
enough potential for data races, created largely by the non-
determinism of the scheduler. Recently, several academic
efforts have explored both static and runtime analysis ap-
proaches in an effort to find data races. However, despite
this, we have not seen these analysis techniques deployed in
practice and we have only seen scarce evidence that devel-
opers find and fix bugs related to data races in JavaScript.

In this paper we argue for a different formulation of what
it means to have a data race in a JavaScript application
and distinguish between benign and harmful races, affecting
persistent browser or server state. We further argue that
while benign races — the subject of the majority of prior
work — do exist, harmful races are exceedingly rare in
practice (19 harmful vs. 621 benign). Our results shed a new
light on the issues of data race prevalence and importance.

To find races, we also propose a novel lightweight runtime
symbolic exploration algorithm for finding races in traces of
runtime execution. Our algorithm eschews schedule explo-
ration in favor of smaller runtime overheads and thus can
be used by beta testers or in crowd-sourced testing. In our
experiments on 26 sites, we demonstrate that benign races
are considerably more common than harmful ones.

1. Introduction

When it comes to client-side Web programming, today
JavaScript powers the majority of large and popular Web
sites. JavaScript execution is single-threaded. Yet the com-
plex needs of sites such as Facebook, Outlook, Google Maps,
and the like have led to asynchrony becoming a common way
to program complex Web applications. It is asynchronous
processing that is responsible for interactive and responsive
user interfaces (UIs) that operate without blocking the UI
thread or requiring a reload, as did web applications of the
late 1990s. Despite JavaScript lacking conventional threads,
the presence of asynchrony creates a potential for races. In
particular, the ordering of event execution in JavaScript as
well as the timing of completions of asynchronous requests is
non-deterministic, prone to be affected by network delayes,
etc., resulting in data races.

In this paper we argue that one should distinguish be-
tween races that have persistent consequences and those
that are ephemeral. We argue that the majority of races in
JavaScript have no persistent consequences — we dub these
races benign. This is because these races only result in invis-
ible to the user portions of the program state, or, at worst,

UI glitches that are either unnoticed by the user, or disap-
pear if the user reloads the page. Given the forgiving nature
of JavaScript execution, where failures of individual event
handlers force the scheduler to terminate the current event
handler and move execution to the next one, these kinds
of failures are not as important as previously believed. We
suggest that a more useful way to think about data races on
the web is by focusing on persistent state, such as client-local
cookies, localStorage and sessionStorage mechanisms, as
well as server-based side efforts. The latter are achieved via
POST calls to the server (GET calls are designed for reads and
are supposed to be idempotent, and thus are not frequently
used for state updates). Our experiments confirm that the
number of such harmful races is quite modest, yet it is these
kinds of races that are more likely to be considered serious
and fixed by developers. Previous research efforts tend to
produce a large number of reports, despite the emphasis on
suppressing false positives [10, 12, 17].

It is not our goal to provide a sound over-approximation
of all possible races in a given application or site. Doing
so is a very difficult task. Indeed, there are some funda-
mental limitation of program analysis for finding races in
JavaScript. Static analysis is unlikely to be sound for large
programs, given the presence of eval and complex language
features, not to mention the fact that precise reasoning
about happens-before relationship between event handlers
statically is simply very difficult. Runtime analysis, includ-
ing various forms of symbolic exploration of possible sched-
ules falls victim to code coverage.

Instead, our goal is to provide a lightweight exploration
algorithm that allows for the exploration of multiple sched-
ules while only requiring a single run. This approach can be
used for testing, including collaborative testing by a large
number of beta- or crowd-sourced testers. A number of com-
panies nowadays provide commercial crowd-sourced testing
services for web sites (http://www.utest.com), which can
be used as a cheap and practical way to increase coverage.

Contributions: We make the following contributions:

• We propose a new view of benign and harmful data races in
JavaScript web applications, and argue that harmful races
should be the primary focus of analysis tools, due to them
affecting the persistent client- or server-side state of the
applications.

• We propose a lightweight exploration algorithm for finding
data races in runtime traces of JavaScript programs. A key
advantage for the scalability of our approach is that it does
not require multiple program runs and can operate on the
basis of a single execution.

• We find and investigate a total of 19 harmful and 621
benign races in 26 web sites, with only 2 observed false
positives.
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2. Overview

In the last several years, we have seen an upsurge of interest
in data races in asynchronous programs and in JavaScript,
more specifically. Researchers have tried applying static and
runtime analysis to the problem of finding races. A funda-
mental challenge with static analysis for a language as dy-
namic as JavaScript is that it is really quite difficult to even
enumerate all the relevant code, as much of the JavaScript
code is produced with the help of eval calls and dynamic
code loading. As a result, the traditional advantage of static
analysis, namely, full path coverage largely does not apply to
this problem. As such, the ability to make sound statements
about the lack of data races is compromised [3, 5, 15, 17].
Additionally, reasoning about runtime events such as multi-
ple XmlHttpRequests (XHRs), whose callbacks race against
each other statically is fundamentally very difficult, because
the happens-before relation is quite complex.

Runtime techniques in this space are also vulnerable to
losing precision, which leads tool authors to develop heuris-
tics to eliminate potential false positives [4, 8, 12]. They also
suffer from the lack of coverage and the inability of mak-
ing sound guarantees about the lack of races. Additionally,
runtime techniques that involve combinatorial schedule ex-
ploration can run into scalability challenges, especially when
the number of possible handlers to schedule is high [8, 12].

Our technique attempts to combine the advantages of
static and runtime analysis. We execute the code only once,
yet we explore multiple execution orders. As such, our tech-
nique scales well, while increasing the coverage of a single-
pass runtime analysis. One way to see our approach is that
in explores neighboring schedules for a particular runtime
execution. We foresee this approach as being especially use-
ful in the context of beta- or crowd-sourced testing: having a
large number of users will naturally increase code coverage.
At the same time, the users’ sessions will not be significantly
slowed down. It should be noted that in the browser, slow-
ing down the browser runtime runs the risk of modifying the
behavior of timeout set with setTimeout and setInterval;
additionally, the runtime may actively attempt to terminate
slow-running events.

2.1 What is a Data Race?

Several possibly definitions of data races have been proposed
for web applications [9, 10, 12]. They all center around
the idea of writes to shared state that are performed by
callbacks. Some of the races in prior work are caused by
user interactions and browser-induced timing. In this work,
our chief focus is on the XmlHttpRequest mechanism, which
allows client-side code to request data from servers:

1 var xhr = new XmlHttpRequest ();
2 xhr.open("GET", "http://www.data.com/mydata.json");
3 xhr.onreadystatechange = function(e, d){
4 ...
5 };
6 xhr.send(null);

The code above is for a typical GET request that obtains
JSON data from a server and schedules an asynchronous
onreadystatechange callback to process the data once it
arrives. Multiple such callbacks can be outstanding, creating
the possibility of what we dub an XHR-XHR race, if these
callbacks write to shared state. Moreover, commonly, while
synchronous XHR execution is possible, XHRs are scheduled
to be dispatched asynchronously, to maintain a responsive
client-side UI [9]. In the rest of the paper, we shall focus on
asynchronous XHRs.

Secondly, a single XHR callback can race with the
browser, resulting in the state variable being set to either 1
or 2. This is because the browser may have multiple script
blocks, some of which may be scheduled either before or af-
ter the callback, depending on the callback’s arrival and how
fast the browser is rendering content:

1 <script >
2 var xhr = new XmlHttpRequest ();
3 xhr.open("GET", "http://www.data.com/mydata.json");
4 xhr.onreadystatechange = function(e, d){
5 state = 1;
6 };
7 xhr.send(null);
8 </script >
9 ...a lot of text and images here...
10 <script >
11 state = 2;
12 </script >

Thirdly, and even more subtly, if the user opens the same
site in multiple browser tabs, it is possible for these tabs
to lead to concurrent execution. Two instance of the code
below may race with each other when run in different tabs,
resulting in a cookie-based race on line 5:

1 <script >
2 var xhr = new XmlHttpRequest ();
3 xhr.open("GET", "http://www.data.com/mydata.json");
4 xhr.onreadystatechange = function(e, d){
5 document.cookie = "value=" + Math.Random ();
6 };
7 xhr.send(null);
8 </script >

The happens-before relation for asynchronous callbacks is
defined by the creation order. The XHR callback is preceded
by the code that creates the XHR (xhr.send). A specific
case of this is what we call nested (or chained) XHRs, when
callbacks are defined one within another. Practically, this is
about the only way for the developer to ensure that there
is ordering of XHR callbacks, so we see this programming
pattern quite a bit.

2.2 Motivating Examples

In an effort to understand the possible impact of data races
on the web, we spent some time analyzing bug reports for
open-source projects located on GitHub. Below we describe
some of the examples of subtle server-side bugs from GitHub.
in the interest of fairness we should mention that these ex-
amples of races reported as GitHub issues were not particu-
larly common bugs for JavaScript projects, an intuition that
is largely confirmed by our results in Section 4.

Example 1 [Old server state.] Issue #79 for the Wheaton-
WHALE project1 describes the following situation:

1. The user reloads the page;
2. onbeforeunload listener fires, and the data is saved to

server;
3. the page is loaded up again, and asks the server for the

data;
4. the client-side JavaScript code loads up the old (out-

dated) data;
5. client state is saved to the server.

In the last step, the old, outdated data is saved to the server,
essentially ignoring data updates. The culprit is the fact that
steps 1 and 3 can race with each other: the data load request

1 https://github.com/WheatonWHALE/whaleweb/issues/79
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1 <html >
2 <script > // 1
3 var xhr = new Xhr();
4 xhr.open(’’, false);
5 xhr.onreadystatechange = function (){ // 2
6 document.cookie = ’var1=1’;
7 };
8 xhr.send ();
9 //for(i=0;i <10000000; i++) console.trace(i);
10 </script >
11 ...
12 <!-- <input id=’mydiv’ /> -->
13 <script > // 3
14 document.cookie = ’var1=2’;
15 </script >
16 ...
17 <script > // 4
18 var xhr2 = new Xhr();
19 xhr2.open(’’, false);
20 xhr2.onreadystatechange = function (){ // 5
21 document.cookie = ’var1=3’;
22 };
23 xhr2.send ();
24 </script >
25 </html >
26 Put your code here.

Figure 1: Multiple XHR example.

may arrive before the save is processed. The implemented fix
makes data updates synchronous. �

Example 2 [Racing for a user ID.] A somewhat similar
situation that has to do with the issue of stale data obtained
from the server is captured in issue #20 in a project called
LikeLines2. LikeLines provides users with a in-browser video
player with a navigable heat map of interesting regions for
the videos they are watching. This case describes two racing
XHR calls that are issued to the backend server during
initialization by the following functions: 1) createSession
and 2) aggregate. The first call is to create a new session
for recording user interactions. The second call is needed for
drawing a heat map.

The problem arises when a user has not contacted the
backend server before. In this case, both XHR calls will be
issued without a cookie, and in both cases the server will
create a new user ID. This is clearly a problem because
interaction sessions are tied to a user ID in this applications.
If the cookie from the call to aggregate “wins” (i.e., arrives
last), then subsequent calls to the server will contain a user
ID that does not match the interactions session. �

In addition to the GitHub issues discussed above, below
we list an illustrative example inspired by some of the
samples from prior work [12, 17], although prior work did
not focus on the issue of asynchronous XHRs.

Example 3 [Racing with the browser.] Consider the code
in Figure 1. For convenience, we mark every handler above
with a number. The happens-before relation induced by this
code example is as follows: 1© ← 2©, 1© ← 3©, 3© ← 4©,
4© ← 5©. As such, our exploration algorithm will consider
the possibility 1© ← 2© ← 3© and 1© ← 3© ← 2©. Similarly,
because 2© and 5© are weakly ordered, traces in which 2©
happens before or after 5© will be considered.

While one can explore these traces via a search in the
schedule space, we choose to do so via data flow. We keep
track of the event handlers that may be “concurrent” and
mark the writes that they make to the same locations as
weak writes.

2 https://github.com/ShinNoNoir/likelines-player/issues/20.

1 READ PROP ID[99044816] = "open" : JSFunction
2 XHR [0000001] Open GET
3 READ PROP ID[98817648] = "send" : JSFunction
4 XHR [0000001] Send
5 XHR [0000001] Callback
6 BEGIN XHR_Callback
7 READ ID[235205312] = document : JSObject
8 WRITE PROP ID[242159440] = cookie : JSInteger (1)
9 Cookie [1020 D800] Write "var1=1"
10 END XHR_Callback
11
12 READ ID[235205312] = document : JSObject
13 WRITE PROP ID[242159440] = cookie : JSInteger (2)
14 Cookie [1020 D800] Write "var1=2"
15
16 READ PROP ID[99044816] = "open" : JSFunction
17 XHR [0000002] Open GET
18 READ PROP ID[98817648] = "send" : JSFunction
19 XHR [0000002] Send
20 XHR [0000002] Callback
21 BEGIN XHR_Callback
22 READ PROP ID[108330176] = "readyState": JSInteger (4)
23 READ ID[235205312] = "document" : JSObject
24 WRITE PROP ID[242159440] = "cookie" : JSInteger (3)
25 Cookie [1020 D800] Write "var1=3"
26 END XHR_Callback

Figure 2: Sample trace illustrating cookie races.

Because 2© and 3© can race, the value of document.cookie
will be either var1 = 1 or var1 = 2. Similarly, for 2 and 5,
the value of document.cookie will be either var1 = 1 or
var1 = 5. To preserve precision, our algorithm maintains
existing happens-before relations such as those between 1©
and 2© and 1© and 4©. �

2.3 Trace Processing

Figure 2 shows a simple trace obtained by running the code
in Figure 1 that illustrates cookie-based races. We start
processing the lines 1–4 where the XHR is opened and send
to the remote server, we mark the XHR callback as an active
callback which can be executed asynchronously any time in
the future. As we process the first XHR callback on lines 6–
10, we will record the write value made to cookie variable
into the memory map where we store values for each variable
id (i.e. 242159440 for cookie).

While recording the written value, we will look for values
of the variable that are written by any callbacks that may
be racing with each other, and complain about a race if
there is any. As we continue processing the trace, we will
record the value written on lines 12-14 by first checking the
earlier values of document.cookie. As this sequential code
segment can race with the earlier XHR callback (there is no
happens-before edge), our processing will record a race on
document.cookie, while adding a new value for the cookie
into the memory map. As we continue to process the trace,
a new XHR is opened and send to the server on lines 16–19
and added to the active callbacks list.

Later, the callback for the second XHR will be pro-
cessed, when a write to the cookie is performed on lines 21–
26. While processing the write operation, the values for
document.cookie will be checked and a race will be recorded,
as two XHR callbacks are marked as racing, resulting in dif-
ferent cookie values.

2.4 Algorithm Summary

Here we provide the underlying intuition for our approach,
with a more formal treatment relegated to Section 3. The key
idea behind our approach is to consider alternative scenarios
within a given trace. We do not attempt to force exploration
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of UI interactions, for example, however, we do explore the
possibilities of different schedules that may occur because of
the order of arrival of asynchronous handlers that are part
of the trace.

Our approach effectively performs static analysis on a
trace that is collected at runtime, as a way to consider dif-
ferent schedule orders. When considering multiple execution
of XHR callbacks as shown in Figure 3, the key observation
is that instead of separately considering each of the possi-
ble schedules, we can encode the effect of the possible race
by merging the state and keeping track of multiple, merged
values. This is analogous to doing meets in static dataflow
or abstract interpretation-style analysis, as an alternative to
a costly meet-over-all-paths (MOP) solution. Conceptually,
given a merge point for variable x with multiple values com-
ing in for two racing XHRs, x = v1 and x = v2, we keep
track of both values {v1, v2}; not of course that if v1 = v2,
no need to keep two copies of the same values exists.

XHR1

x =  
y =  
z = v1

XHR2

z = v2

z={v1,v2}

Figure 3: Merging two
states after an XHR.

We formulate our race
detection algorithm as a
dataflow analysis on the val-
ues within a given execution
trace. We flag a possible
race if multiple values may
flow to a sensitive location,
indicating a presence of
scheduling dependencies;
these sensitive locations
are persistent storage such
as cookies, localStorage,
sessionStorage, and,
lastly, the DOM, etc. These
latter locations serve as
the sinks of our data flow
analysis. Returning to the
example in Figure 1, we
can represent the race between handlers 2© and 5© as an
assignment document.cookie = {’var1 = 2’, ’var1 = 3’}
as a merge node after handler 5©. This of course represents
a direct flow of multiple values to a sensitive persistent
storage location document.cookie. More interesting cases
involve multiple steps of propagation.

2.5 Implementation

To collect execution traces, we have instrumented the most
recent version of the Firefox web browser. Our changes span
both the SpiderMonkey JavaScript engine to track data
propagation through the memory of the browser as well as
operations on cookies, localStorage, and the like, which are
recorded by instrumenting the DOM. Our instrumentation
spans over three main components of Firefox:

• XPCOM (Cross Platform Component Object
Model): In order to record the triggered XHR call-
backs, we instrumented the event queue in Firefox in
nsThread.cpp. When events are taken from the queue
for execution, we mark XHR readystatechanged events
as well as button clicks initiated by the user.

• Gecko (Layout engine): We also need to instrument
DOM API implementation of Firefox for recording up-
dates made to DOM elements of interest. We achieved
this by modifying various DOM class implementations
like nsGlobalWindow.cpp, DOMStorage.cpp, etc.

• SpiderMonkey (JavaScript Interpreter): Lastly, we
instrumented the JavaScript interpreter for recording

value manipulation on variables and objects and also to
mark the start and end points of XHR callback execution.
The former is achieved by instrumenting the JavaScript
bytecode interpreter on Interpreter.cpp and jsapi.cpp.

Overall, our instrumentation is quite sparse and we believe
can be easily migrated to another open-source browser such
as Chromium. We have added a total of about 430 lines of
instrumentation code to Firefox to collect our traces. A total
of 12 files were modified.

Deployment strategies: The process of race detection
is something that can be performed both online3, as the
application is running, as well as offline, as an auditing step.
We envision that as part of beta-testing, traces from multiple
users can be analyzed. Note that as we will highlight in
Section 4, even relatively simple-looking sites can create long
traces with a large number of events. At the same time,
the number of events relevant to asynchrony and scheduling
is relatively small. Our analysis for finding potential races
is implemented as a linear pass over the trace. However, if
desired, this is something that can be parallelized as well, by
splitting longer traces to be analyzed on different machines.

3. Formalization

Since JavaScript execution is single-threaded, the execution
of event handlers and XHR callbacks is carried out non-
preemptively, without interruption. We find it convenient to
represent the executions of event handlers, XHR callbacks,
and portions of script code executed without pre-emption
(“sequential blocks”) as execution blocks with unique IDs.
Other entries in an execution trace will also be assigned
unique IDs as detailed later4.

There is no universally accepted definition of the
happens-before relation for web-based JavaScript code. We
define the happens-before relation (denoted ←) not at the
level of low-level memory accesses, but at the level of higher-
level language constructs, based on causality information we
abstract from JavaScript operational semantics as was il-
lustrated in Figure 1. Within each uninterrupted execution
block, trace entries are ordered by the program, and, there-
fore, happens-before order. We define and record a happens-
before order between blocks such that if id ← id ′ then all
trace entries in id happen before those in id ′. We order
id ← id ′ if id ′ appears later in the trace and one of the
following hold:

1. Both blocks are sequential blocks. Sequential blocks are
ordered by ← in the order they appear in the trace
because of the browser-imposed ordering.

2. Both blocks are event-handling blocks. Event handling
blocks are ordered by ← by how they occur in the trace
to reflect the order of user interactions.

3. id ′ is an XHR callback, and its XHR send is within block
id ; this is because the XHR callback can only happen
after the send operation.

3 According to the data in Figure 6, our analysis is fast enough
to be run online, so the beta testers only need to use a differently
compiled version of the browser or perhaps a browser with a flag
that they turn on. The results of such exploration can be centrally
collected and communicated to the site developers.
4 Note that these IDs are not to be confused with the statically-
assigned numbers in Figure 1 as, for instance, the point in an
execution where an XHR callback is registered and the point
where it is executed are different.
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3.1 Modeling and Analysis of Traces

The set of memory locations (simply referred to as “loca-
tions” from here on) manipulated by a JavaScript program
is denoted by Locs, and the set of values they can take by
Val . To denote the values of locations that have not yet been
assigned a value, we use the symbol ⊥Val . We treat each
field of each object as a unique, separate ordinary location
for race-detection purposes. Client-side persisted locations
are of type key-value store and are treated specially. These
are document.cookie, sessionStorage and localStorage.
The set of these locations is denoted by KV . To treat read
and write accesses in the trace uniformly, we consider each
(kv , ky) pair to be a memory location, i.e., an element in
Locs and use ⊥Val to represent the value for keys not in the
store. Accesses to distinct keys in a given kv ∈ KV , similarly
to accesses to different memory locations, do not race with
each other, The set of locations that represent DOM ele-
ments and are written to using the setter for the innerHtml
property of a DOM element is denoted by DOMElts ⊆ Locs.

The value of each location v at each point in the execution
is represented by a memory map, V. V(v) consists of set of
pairs of the form (vl, id) where vl ∈ Val and id ∈ IDs.
Intuitively, (vl, id) ∈ V(v) means that in this trace or a re-
ordering of it preserving the happens-before relation, v may
have the value vl which has been written to it within the
block id . When a trace entry with ID id is a write access to
v, all entries in the memory map V(v) by trace entries with
id id ′ that happen before id are removed. Other entries in
V(v) are there due to “concurrent” execution blocks and are
therefore not removed.

3.2 Defining Traces

Formally, a trace is a finite sequence of trace entries
〈λ0, λ1, λ2, . . . λn〉 of the following types:

• XHR, event handling, and sequential blocks: Trace
entries λ = CBBegin(id) and λ = CBEnd(id) denote
the beginning and end of the execution of the callback
for the XHR with ID id . λ = HandlerBegin(id) and
λ = HandlerEnd(id) do the same for event handler
blocks, and λ = SeqBegin(id) and λ = SeqEnd(id) for
sequential blocks.

• Key, location, innerHTML accesses λ =
keyWr(kv , ky , vl, varsRd , id) denotes the writing of
the value vl for the key ky in the key-value store
kv within the block with ID id . The value vl has
been computed immediately prior to the write trace
entry as the result of an expression over the memory
locations varsRd . λ = keyRm(kv , ky , id) denotes the
removal of the value the key ky from kv within block
id . λ = varWrite(v, vl, id) denotes the writing of the
value vl to the location v within block id . Finally,
λ = setHTML(hElt , hVal , id) denotes the setting of the
innerHtml property of a DOM element hElt to value
hVal within block id .

• POST, XHR send: λ = post(url , id , id in, vl, varsRd) is a
POST request XHR call or Window with id id and the call
occurs within an execution block with ID id in. The data
posted vl is the computed result of an expression over the
memory locations varsRd . λ = xhrSend(id , id in) denotes
an XHR send operation for the XHR object with ID id
that takes place within an execution block with ID id in.
This send is a GET request.

Evt-Handler-Begin
λ = HandlerBegin(id) HB

′
= TransClose(HB ∪ {(idEvt , id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

Evt-Handler-End
λ = HandlerEnd(id) id

′
Evt = id

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB,P, idSeq , id

′
Evt )

Seq-Blk-Begin
λ = SeqBegin(id) HB

′
= TransClose(HB ∪ {(idSeq , id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

Seq-Blk-End
λ = SeqEnd(id) id

′
Seq = id

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB,P, id′

Seq , idEvt )

XHR-Post
λ = post(url, id, idin, vl, varsRd)

P′
= P ∪ {(v, id)|v ∈ varsRd} HB

′
= HB ∪ {(idin, id)}

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P′

, idSeq , idEvt )

XHR-Send
λ = xhrSend(id, idin) HB

′
= TransClose(HB ∪ {(idin, id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

Key-Write
λ = keyWr(kv , ky, vl, varsRd, id)

V′
= V[(kv , ky) := V(kv , ky) ∪ {(vl, id)} \ {(vl′, id′

)|id′ ← id or id
′
= id}]

(V,HB,P, idSeq , idEvt )
λ−→ (V′

,HB,P, idSeq , idEvt )

Write
λ = varWrite(v, vl, id)

V′
= V[(v) := V(v) ∪ {(vl, id)} \ {(vl′, id′

)|id′ ← id or id
′
= id}]

(V,HB,P, idSeq , idEvt )
λ−→ (V′

,HB,P, idSeq , idEvt )

Set-DOM
λ = setHTML(hElt, hVal), id)

V′
= V[(hElt) := V(hElt) ∪ {(vl, id)} \ {(vl′, id′

)|id′ ← id or id
′
= id}]

(V,HB,P, idSeq , , idEvt )
λ−→ (V′

,HB,P, idSeq , idEvt )

XHR-Post
λ = post(url, id, idin, vl, varsRd)

P′
= P ∪ {(v, id)|v ∈ varsRd} HB

′
= HB ∪ {(idin, id)}

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P′

, idSeq , idEvt )

XHR-Send
λ = xhrSend(id, idin) HB

′
= TransClose(HB ∪ {(idin, id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

Figure 4: Trace analysis rules.

3.3 Interpreting Traces

Given a trace Trace = 〈λ0, λ1, λ2, . . . , λn〉, our race detec-
tion algorithm analyzes it by processing it sequentially, one
log entry at a time. The algorithm maintains analysis state
represented by the tuple Σ = (V,HB ,P, idSeq , idEvt). Here,
V is the memory map. HB is the happens-before relation,
which is a partial order over IDs. Whenever new elements
are added to HB by a trace processing rule, the transitive
closure of the relation is taken to obtain the resultant HB .
HB is initially the empty relation. P is a list of pairs of the
form (v, id) where the location v has been read while com-
puting the value submitted by a XHR POST request with ID
id . Finally, idSeq , and idEvt are the IDs of the last sequential
block processed or the last event handling block processed by
our algorithm, respectively, or ⊥ if no such callback or block
exists. Given a state Σ = (V,HB ,P, idSeq , idEvt) reached at
a point in the trace, the analysis state reached after process-
ing the log entry is described by the rules given in Figure 4
and explained below.
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edition.cnn.com 3 3 13 0 35 0 0 71 1 3 0 12,065 3 31 0
mlb.mlb.com 25 25 92 0 68 2 0 28 2 30 2 93 46 39 0
news.qq.com 8 8 28 0 17 0 0 8 0 0 0 153 10 64 2
wireless.att.com 22 22 72 3 79 4 0 46 32 11 2 902 847 60 5
www.aljazeera.net 12 12 32 2 24 0 0 6 0 0 0 1,095 29 46 7
www.bild.de 32 32 86 1 75 11 0 515 1 14 2 589 17 164 0
www.eltiempo.com 10 10 20 0 81 0 0 521 0 1 0 160 2 72 0
www.fedex.com.us 10 10 18 0 88 1 0 2 0 2 0 251 25 172 0
www.fujitv.co.jp 41 41 122 2 38 0 0 27 0 16 0 172 22 34 0
www.gazetta.it 22 22 67 4 115 15 0 68 0 19 0 119 24 52 0
www.girlsgogames.com 18 18 44 0 92 4 0 30 6 11 2 21 8 43 0
www.imdb.com 4 4 12 1 14 0 0 4 0 0 0 66 3 42 0
www.milliyet.com.tr 7 7 19 0 46 0 0 0 0 4 0 51 19 210 143
www.myvideo.de 20 20 87 0 99 0 0 115 0 8 0 86 0 23 0
www.nasa.gov 35 35 113 18 148 0 0 11 0 8 0 703 82 62 8
www.ntv.com.tr 10 10 14 0 58 1 0 55 0 293 0 112 3 66 0
www.nytimes.com 8 8 0 0 10 0 0 6 0 2 0 35 0 46 0
www.optimum.net 29 29 78 8 174 3 0 6 0 6 0 426 258 182 21
www.politico.com 27 27 65 9 231 47 0 36 18 1 0 110 19 248 10
www.premierleague.com 21 21 101 0 31 0 0 0 0 0 0 223 11 47 0
www.radikal.com.tr 13 11 20 0 111 0 0 33 0 2 0 85 5 59 0
www.sports.ru 28 28 90 1 48 0 0 84 0 0 0 128 58 52 1
www.sporx.com 5 5 0 0 33 0 0 31 0 0 0 49 0 38 0
www.tvguide.com 15 15 26 2 90 6 0 15 0 23 0 728 586 57 0
www.welt.de 23 23 44 1 112 0 0 366 0 4 0 546 19 68 0
www.zaobao.com 37 37 121 0 83 0 0 0 0 0 0 127 36 125 78

Figure 5: Characteristics of our benchmarks web sites.

Callbacks: CB-Begin and CB-End (not shown) keep track
of the ID of the ongoing XHR callback block. Seq-Blk-
Begin processes the log entry indicating the beginning of
a sequential block with ID id by setting idSeq to id . Seq-
Blk-End resets idSeq to ⊥. The rules ensure that the oc-
currence order of sequential blocks in the trace and their
happens-before order coincide. Evt-Handler-Begin and
Evt-Handler-End operate similarly to the corresponding
Seq-Blk rules. The order of occurrence in the trace of the
event handlers is the same as their happens-before order.
Event handlers and sequential blocks are not ordered with
respect to each other by the happens-before relation.

Location updates: Key-Write handles the case where
key ky in the key-value map kv is updated. We declare
a potentially-harmful race if |Val(v)| > 1 any location v
read while the new value for the key is being computed
(v ∈ varsRd) indicating the potential for non-determinism.
The rule computes V ′(kv , ky) by from V(kv , ky) by adding
the pair (vl, id). removing all pairs (vl′, id ′) such that id ′ ←
id . Key-Remove (not shown) writes the value ⊥Val to the
key ky . Write and Set-DOM are similar to Key-Write
above, updating V for a location v or a DOM element hElt
by removing value-ID pairs overwritten as dictated by the
happens-before relation and adding the new value-id pair
written by the current trace entry.

POST, send: The rule XHR-Post declares a potentially
harmful race if |V(v)| > 1 for any location v ∈ varsRd , since
at least one location used in the computation of vl, the data
posted, has the potential for non-determinism. XHR-SEND
updates the happens-before relation. xhrSend(id , id in) indi-
cates that the send for the XHR with id id has taken place in
block id in. id in ← id . This rule and the fact that CB-Begin
and CB-End do not modify the happens-before relation en-

code the fact that only chained XHR calls are ordered by←
with respect to each other5.

3.4 Detecting Races

We say V(v) has non-determinism potential on a location v
when the memory map contains at least two different values
for v, i.e., when there are pairs (vl, id) and (vl′, id ′) in V ′(v),
such that vl 6= vl′ and id 6= id ′. Our algorithm declares a
race on a location v while evaluating the Write, Set-DOM,
and Key-Write rules if the memory map V ′(v) computed
by the rule has non-determinism potential on v. We also
declare a race when evaluating the XHR-Post and Key-
Write rules, if a variable read when computing the value
posted or written, v ∈ varsRd , V(v) has non-determinism
potential for v. Of these races, only the ones associated with
Key-Write and XHR-Post rules are deemed to be harmful
races.

Consider a prefix of the trace in a “quiet” state such that,
at the end of the prefix, no XHR callback or execution block
is in progress. Suppose that our algorithm has signaled non-
determinism potential on a location v while processing a
trace entry λ within the last block or callback with id id in
this prefix. Then a different re-ordering of the the execution
blocks and/or XHR callbacks while leaving the happens-
before relation in the prefix intact may result in a different
final value for v, as explained next.

5 Note that it is possible to define the happens-before relationship
differently, for instance, declaring xhr i to happen before xhrj if
the send entry for xhrj appears later in the trace than the end
of the callback for xhr i. While such a definition may capture
the happens-before relationship observed in a particular schedule
more precisely, our definition narrows in on ordering relationships
enforced by the JavaScript semantics and excludes those that may
have taken place differently in different executions of the same
program driven by the same user interaction.
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www.imdb.com 14.28 1.21 58 2
www.zaobao.com 30.75 1.40 38 6
news.qq.com 30.77 1.01 78 4
www.sporx.com 37.49 1.92 49 6
www.nytimes.com 40.58 1.26 47 8
www.fujitv.co.jp 45.79 1.39 72 8
www.girlsgogames.com 51.98 1.92 78 10
www.gazetta.it 93.02 3.07 182 17
www.radikal.com.tr 94.20 3.41 102 17
www.fedex.com.us 95.44 3.30 58 19
www.milliyet.com.tr 95.78 3.93 133 16
www.myvideo.de 104.82 4.38 121 18
www.welt.de 125.11 5.39 233 26
www.bild.de 138.47 5.74 119 22
mlb.mlb.com 142.81 4.61 81 21
wireless.att.com 151.22 4.47 87 24
www.tvguide.com 152.90 6.39 250 27
www.ntv.com.tr 162.09 6.50 158 27
www.aljazeera.net 169.87 6.72 93 28
www.sports.ru 209.68 8.33 257 29
edition.cnn.com 216.09 8.13 115 35
www.eltiempo.com 222.65 11.43 169 43
www.optimum.net 224.22 9.06 244 41
www.premierleague.com 264.08 8.16 244 47
www.politico.com 271.29 11.22 261 48
www.nasa.gov 407.76 40.91 425 56

Figure 6: Trace statistics and processing times.

Let (vl, id) and (vl′, id ′) be in Val(v) such that id ′ 6= id
and vl 6= vl′. It must be the case that while both id ′ and id
wrote to v, these two execution blocks are not ordered by
the happens-before relationship. Otherwise, either (vl, id)
or (vl′, id ′) would have been removed from Val(v), accord-
ing to the update rules of our algorithm and how they use
the happens-before relation in variable updates. Therefore,
it is possible to modify the execution by delaying the exe-
cution of the block with id id ′ until after the execution of
the block with id id . In this case, the final value of the lo-
cation v or (kv , ky) would be different at the final state of
the newly-obtained execution. This points to a potentially
different result produced purely as a result of XHR callback
scheduling non-determinism.

There are two sources of false positives in our race detec-
tion approach. The first source is the assumption made in the
argument in the previous paragraph while obtaining a new
execution by delaying the execution of the block with ID id ′

past other blocks. The assumption is that control decisions
made in the original execution based on data values written
by the block id are not modified in a way that makes the
reordered execution infeasible. In our empirical experience,
such cases are rare and can be ruled out by inspection or re-
playing and validating the reordered execution. The second
source is the check performed when a value is written to a
persisted location or sent on the network. In these cases,
if, while computing the written or sent value, a location
with non-determinism is read, our algorithm signals a po-
tentially harmful race. This approach is conservative, i.e.,
non-determinism in the value of one of the locations in an
expression may not result in non-determinism in the value
of the result. Even in cases where this is the cause of a false
alarm, we believe that the potentially different data values
flowing to a persisted output location may be of concern to
programmers.
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edition.cnn.com 0 0 0 0 0 0 12 0 0
mlb.mlb.com 1 0 0 0 0 0 28 0 0
news.qq.com 0 0 0 0 1 0 6 0 0
wireless.att.com 1 0 0 0 9 0 43 0 0
www.aljazeera.net 0 0 0 0 2 1 4 0 0
www.bild.de 0 0 0 0 0 0 58 0 0
www.eltiempo.com 0 0 0 0 0 0 9 0 0
www.fedex.com.us 1 0 0 0 1 0 10 0 0
www.fujitv.co.jp 0 0 0 0 1 0 13 0 0
www.gazetta.it 2 0 0 0 0 0 19 0 0
www.girlsgogames.com 2 1 0 0 0 0 0 0 0
www.imdb.com 0 0 0 0 0 0 8 0 0
www.milliyet.com.tr 0 0 3 0 0 0 5 0 0
www.nasa.gov 0 0 0 0 9 0 14 0 0
www.ntv.com.tr 0 0 0 0 0 0 13 0 0
www.optimum.net 2 0 0 0 10 3 22 0 0
www.politico.com 6 0 0 0 0 2 224 0 11
www.radikal.com.tr 0 0 0 0 1 0 11 0 0
www.sports.ru 0 0 0 0 0 0 17 0 0
www.tvguide.com 0 0 0 0 0 0 15 0 0
www.welt.de 0 0 0 0 0 0 19 0 2
www.zaobao.com 0 0 0 0 0 7 11 0 0

Totals 15 1 3 0 34 13 561 0 13

Σ =19 Σ =47 Σ =574

Figure 7: Races found by our analysis.

4. Evaluation

This section describes the experimental evaluation we have
performed on a set of 26 complex pages.

Research Questions: Our goal has been to address the
research questions listed below.

RQ1: How common are races on persistent state such as
document.cookie, localStorage, and side-effects such as
POST requests? We consider these to be the most harmful
races there are in web applications.

RQ2: How common are races on sessionState? Session
state is cleared on browser restarts. However, given that
the browser is often not restarted for days if not weeks,
data in sessionState can persist for long periods of time,
if not permanently.

RQ3: How common are races on transient state such as
memory locations and DOM elements? These are gen-
erally not the kind of errors that we deem to be highly
problematic and, moreover, often these are not even ob-
servable by the user [9].

4.1 Experimental Setup

For our experiments, we have selected a set of 26 sites from
Alexa’s top 5,000 list. To find suitable sites, we used an
instrumented browser to crawl all sites, focusing on sites
that have a large number of outstanding XHRs.
Site statistics: Figure 5 summarizes various aspects of the
sites we picked. We specifically separate the number of op-
erations within XHR callbacks, as these can lead to races.
Columns 2–5 show the number of observed XHR open and
send operations, executed XHR onreadystatechange call-
backs, and the number of callbacks within other callbacks
(so-called nested XHRs). Columns 6–11 focus on the use of
persistent storage. Columns 6–7 show the number of writes
to document.cookie as well as writes nested in an XHR
callback. Column 8 shows the number of XHR POST oper-
ations in an XHR callback. Columns 9–10 give the num-
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ber of writes to localStorage both in general and within
XHR callbacks. Columns 11–12 give the same information
for sessionStorage. Lastly, columns 13–16 give information
about various forms of DOM manipulation such as setting
innerHtml and changing the contents of INPUT elements;
both totals and nested variants of these counts are provided.

Trace statistics: The workload used to collect these counts
was simply loading the page and applying basic user in-
teractions like button-link clicks. The counts for DOM
manipulation are generally higher than those for cookies,
localStorage, or sessionStorage. It is natural to expect
more races on DOM elements as well, compared to more
uncommonly used persistent elements. Figure 6 summarizes
information about the traces we used for our analysis. The
compression ratios range between 9.97 and 33.83. The per-
centage of time it takes to analyze a trace compared to the
time to record a trace ranges between 3% and 32%.

Detection Time: Figure 6 shows the trace collection6 and
analysis time as a function of trace size. Analysis time grows
approximately linearly with the size of the trace and is a
fraction of the trace recording time shown in the second
column. Since trace analysis can be parallelized or run on
an unused core, we can envision this analysis being run in
parallel with execution. Among other advantages, this would
obviate the need for trace storage and transfer.

4.2 Detection Results

In this section we describe and analyze several representative
races found with our approach.

Example 4 [sessionStorage in milliyet.com.tr.] In the
case of www.milliyet.com.tr, the race on sessionStorage
was caused by a shared variable namespace that is used
for generating the key name. The variable is written at
two different locations, one being an XHR callback that is
executed using jQuery.ajax method. The execution steps
are listed below and the relevant code is shown in Figure 8:

1. As a page loads, an XHR is created using the jQuery.ajax
method (included in www.milliyet.com.tr/D/j/base.
js?v=20) and sent to the server (lines 3–5);

2. once the response is received a user-defined callback is
executed using jQuery.ajax.done (lines 19–22);

3. namespace variable is set to empty string at the end of
jQuery.ajax.done method (line 21);

4. an external library is initialized by setting the namespace
variable to ’ uv ’(line 46);

5. namespace variable is subsequently used for generating a
sessionStorage key (lines 43–45).

In the last step, the value of namespace is used for setting an
item on the sessionStorage for recording user interactions
with the web page. In this particular trace, we observe
that multiple items are added to the sessionStorage using
the namespace as a prefix (i.e. uv autoprompt disabled,
uv r). Any future read operations on the sessionStorage

keys will depend on this prefix namespace. As the XHR
callback can race with the namespace writes which sets the
value for namespace to the empty string, it may result in a
failed read operation. �

Example 5 [innerHtml in radikal.com.tr.] Another race-
inducing execution trace is obtained from www.radikal.

6 Sample traces can be found at pastebin.com/MxF7ENPx,
pastebin.com/JeSY4Fy8 and pastebin.com/1pUsGUgb.

1 <script >
2 function MilGraphWithStatsV2(...){
3 jQuery.ajax(method , url,
4 // 1: www.milliyet.com.tr/D/j/base.js?v=20
5 function (data) { // Process data });
6 ...
7 }
8 </script >
9 ...a lot of text and images here...
10 <script >
11 jQuery.extend({
12 ajax: function (url, options){
13 ...
14 var xhr = new XmlHttpRequest ();
15 xhr.open(method , url)
16 xhr.onreadystatechange = done;
17 xhr.send(null);
18 ...
19 function done(...){
20 // 2: www.milliyet.com.tr/D/j/base.js?v=20
21 namespace = ""; // write to sessionState
22 }
23 }});
24 </script >
25 ...
26 <script >
27 // 3: widget.uservoice.com/uE6Mda0sQpbMbkAEhFaUig.js
28 r.prototype.get = function(t) {
29 if (this.storage) {
30 var e = this.storage.getItem(this.makeKey(t));
31 return e;
32 }
33 };
34 r.prototype.set = function(t, e) {
35 this.storage &&
36 this.storage.setItem(this.makeKey(t),
37 JSON.stringify(e))
38 };
39 r.prototype.remove = function(t) {
40 this.storage &&
41 this.storage.removeItem(this.makeKey(t))
42 };
43 r.prototype.makeKey = function(t) {
44 return r.namespace + t
45 };
46 r.namespace = "__uv_"; // write to sessionState
47 </script >

Figure 8: sessionStorage manipulation in milliyet.com.tr. To
save space, we remove unrelated lines of code.

com.tr, where two XHR callbacks race with each other
when it comes to writing to innerHtml property of a <div>
block in the DOM. In this news web site, users can filter
displayed news according to their preferred categories, by
using category links on the page. Each click action on a
category link will generate an XHR call to server to gather
news for the corresponding category. The race is captured
within the execution steps listed below; the corresponding
code is shown in Figure 9:

1. User clicks on a category link (lines 2–3) for enabling
a category on the web page triggering the AddCategory
method (lines 8–11);

2. AddCategory method will than trigger GetArticle
method (line 10);

3. GetArticle method (lines 12–15) makes an XHR call
using jQuery.load for <div> with id r5 content upd
(line 14);

4. user clicks another category link (lines 4–5) triggering
another XHR call;

5. both XHR calls sets innerHtml of the same <div> on the
DOM (line 8).
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1 <html > // 1: index.html
2 <a id="a_hayat" class="category"
3 href=’Javascript:AddCategory ("hayat ");’>HAYAT </a>
4 <a id="a_spor" class="category"
5 href=’Javascript:AddCategory ("spor ");’>SPOR </a>
6 <div id="r5_content_upd"></div >
7 <script >
8 function AddCategory(categoryname){
9 mynewCategoriesValue += categoryname;
10 GetArticle(mynewCategoriesValue );
11 }
12 function GetArticle(categoryValue){
13 var c_url = c_srcDomain + categoryValue;
14 $("#r5_content_upd").load(c_url, cbFunction );
15 }
16 </script >
17 </html >

Figure 9: Race on innerHtml manipulation in radikal.com.tr.
To save space, we remove unrelated lines of code.

At the end of this execution, the displayed DOM will depend
on the order of the responses returned from the server as
the <div id= r5_content_upd> is directly affected by the
asynchronous XHR callback. �

1 <script >
2 // 1: rum-dytrc.gazzetta.it
3 // /ajax/dtagent60_bjnprs3t_7082.js
4 function sb(a, b) {
5 var d;
6 d = d + "?" + "dtCookie\x3d"
7 + encodeURIComponent(v(Ua)) + ";"
8 + encodeURIComponent(document.location.href);
9 fb(cb, d, c, e)
10 }
11 E(q, "load", function (){
12 fb(m, b.path, n, b.data);
13 }
14 function fb(a, b, c, d) {
15 var h;
16 h.onreadystatechange = function () {
17 4 == a.readyState && (200 == a.status ?
18 e(a.responseText) : db && B.sf &&
19 eb.push({path: b,data: c}), a = m)
20 }
21 h.open("POST", b, c);
22 h.send(d);
23 }
24 function e(a) {
25 a = a && a.split("|");
26 for (var b = 1; b < a.length; b++) {
27 var c = a[b].indexOf("dtCookie\x3d");
28 if (-1 < c) {
29 y("dtCookie",
30 decodeURIComponent(a[b].substr(c + 9)));
31 break
32 }
33 }
34 }
35 function y(a, b) {
36 document.cookie = a+"\x3d"+b
37 +";path\x3d/" + w.domain;
38 }
39 <\script >

Figure 10: Race on document.cookie manipulation in
gazetta.it. To save space, we remove unrelated lines of code.

Example 6 [document.cookie in gazetta.it.] In this ex-
ample of a document.cookie race from www.gazetta.it, the
web site uses an application monitoring library (DynaTrace
Real User Monitoring found at dynatrace.com) for record-
ing and POSTing user actions and browsing experience to a
remote server. Each POST request initiated by this library
updates the key dtCookie of the document.cookie with the

1 XHR [126 F0800] Send
2 ...
3 READ ID[235205312] = document : JSObject
4 WRITE PROP ID[242159440] = cookie : JSString
5 Cookie [1020 D800] Write "fsr.s=%7B%22v2%22%7D" (1)
6 ...
7 READ ID[235205312] = document : JSObject
8 WRITE PROP ID[242159440] = cookie : JSString
9 Cookie [1020 D800] Write "fsr.s=%7B%22v2%22%2C%7D" (2)
10 ...
11 XHR [126 F0800] Callback
12 BEGIN XHR_Callback
13 ...
14 READ ID[235205312] = document : JSObject
15 READ PROP ID[242159440] = cookie : JSInteger - (3)
16 "fsr.s=%7B%22v2%22%2C%7D"
17 ...
18 READ ID[235205312] = document : JSObject
19 WRITE PROP ID[242159440] = cookie : JSString
20 Cookie [1020 D800] Write
21 "fsr.s=%7B%22v2%22%2C%22%3A1%7D" (4)
22 END XHR_Callback

Figure 11: Trace from optimum.net illustrating a false positive.

response value from the server. A race occurs when mul-
tiple XHR calls try to write the new response value to
document.cookie. The execution steps are listed below, with
line references from the code shown in Figure 10:

1. At the page load time, an XHR call is created for initial-
izing the monitoring process (line 9);

2. the data is sent to a URL constructed from dtCookie
value (lines 6–8);

3. dtCookie key is updated with the server’s response
(lines 35–37);

4. a new XHR is created at onLoad DOM event for posting
loading time of the page (lines 11-13);

5. callbacks of each XHR try to write to the same
document.cookie key dtCookie (lines 35–37).

The value of dtCookie key depends on the order of the
XHR callbacks, causing possible issues with future POST
operations, as the value is used for URL generation. �

4.3 False Positives

In looking for possible false positives, we have decided to
focus our attention on both persistent races (19) and those
on the DOM state (47). Out of the 66 races we investigated,
we identified only two cases as false positives. These are
cookie races in fedex.com and optimum.net.

Figure 11 shows the trace from optimum.net, with writes
to the cookie key fsr.s at multiple locations (lines 6, 10,
and 22), one of which is within an XHR callback. In this
case, fsr.s is used for collecting site statistics where the key
value is updated by concatenating new values(lines 11–22).
Although the XHR callback may happen in between two
cookie writes on lines 5 and 6, causing a different value for
the key, at the end of the execution the cookie key fsr.s will
contain all the written values but in different orders. In this
case, the program treats this value as a set and not a list,
so, while we catch the non-determinism correctly, this is not
really a bug in the program. The false positive in fedex.com
is very similar, with a race is on cookie key s sess, updated
within an XHR callback.

Benign memory races: We would also like to highlight
an example of a memory race that does not have persistent
consequences. On radikal.com.tr, there is a global variable
“duration” that is used to measuring time elapsed at differ-
ent points throughout the execution on which there is a race
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between its update in sequential code and in an XHR call-
back. The value of this memory location does not propagate
to any persisted state and cause non-determinism.

4.4 Discussion

Returning to the research questions in Section 4, we
clearly see that according to Figure 7, races on persistent
state (RQ 1) are quite uncommon, with only 19 for 26 sites.
Races on session state (RQ 2) are also uncommon (only 3
races observed), in part because session state is used not
as frequently as cookies (Figure 6). Lastly, races on tran-
sient state are considerably more frequent. While changes
to HTML content may technically be races, one could ar-
gue that most of these are ephemeral. Indeed, the execution
model of JavaScript-based web pages induces a great deal
of non-determinism. This is because many if not most web
pages are not the same across multiple reloads: the ads on
the sides of the page change; content of pages often changes
(consider a rapidly changing news site), sometimes the ex-
perience of the first visit to a page and subsequent ones
is different because of cookies. The browser user has been
trained over the last decade not to expect much consistency
and, when everything else fails, to reload the page. Addi-
tionally, the JavaScript execution model is extremely per-
missive: errors are “swallowed” by the runtime (the current
event handler is terminated) and in many cases pages can
survive exceptions and keep on running.

Our observations mesh well with the anecdotal experience
of the user encountering any problem on the web: one only
needs to reload the page for the problem to go away. In a
sense, web programming is very forgiving. This is different
from thread-related races in desktop applications and also
data races in mobile apps [4, 8], where researchers are able
to replicate races with obvious visual consequences (mangled
or upside down images on the screen, for instance).

5. Related Work

This section covers some of the recent work on finding races
in JavaScript programs and asynchronous code.

Races in Asynchronous Programs: Hsiao et al. propose
an approach to finding a subset of asynchronous races in
Android apps, focusing on races that lead to use-after-free
violations (i.e. uses of a freed pointer) [4]. While this tool
also does offline analysis of a single execution trace, their
focus is on computing an explicit happens-before relation,
which they apply to the trace in order to find accesses that
may lead to user-after-free possibilities. They employ some
heuristics to minimize the possibility of false positives. We
focus on data flow from multiple values to sensitive locations
(like document.cookie), an approach that naturally elimi-
nates the need to explicitly reason about commutativity.

Maiya et al. [8] et al. focus on a systematic exploration of
possible schedules using a UI explorer and reasoning about
the obtained traces using a race detector. A precise model
of the Android execution life cycle is key to avoiding false
positives, although a large number of these remain.

Races in JavaScript: Zheng et al. [17] propose a static
technique to detect potential races in JavaScript applica-
tions. More recently, Petrov et al. [10] and Raychev et al. [12]
have observed the potential for asynchrony creating out-of-
order execution and developed a notion of race conditions
for Web applications written in JavaScript. In principle,
race conditions can arise because of accesses to data shared
among components of a Web page which are not ordered by
proper synchronization, or, more formally, a happens-before

relation. Of course, on a Web page, the entire DOM is (a
giant blob of) global state, creating the potential for races.

Petrov et al. [10] define a happens-before relation for Web
pages and generalize the notion of race conditions to take
into account cases where, logically, there are unordered ac-
cesses to the same resource. The authors present a dynamic
method for detecting races in a given execution of a Web
page, explore similar executions that could potentially be
racy, and, in later work [12] identify and filter out large
sets of benign races. As discussed earlier, our work is distin-
guished from these studies by the fact that we only pursue
race conditions that lead to non-determinism in persisted
state or data sent to the server. Our choice of the happens-
before relationship follows from this design decision and only
records high-level causality relationships.

Mutlu et. al. [9] advocate the notion of observable races,
i.e. those that can be seen and visually distinguished by the
end user. Our notion of persistent side effects is even stronger
than that captured in this paper.

Program Analysis in JavaScript: A number of analyses
have been propose for JavaScript in recent years; here we
highlight only a handful. Additionally, several aspects of the
language such as the use of eval [5, 14] and trying to under-
stand JavaScript performance [11, 13]. Rozzle [6] proposes
the idea of lightweight multi-execution in the context of a
JavaScript engine, similar to our work. The goal of Rozzle
is to expand the impact of malware detectors by increasing
code coverage and thereby observing more, potentially ma-
licious, code. In terms of techniques, Rozzle is probably the
closest runtime exploration approach to the work described
in this paper. A project by Chugh et al. focuses on staged
analysis of JavaScript and finding information flow viola-
tions in client-side code [1]. The Gatekeeper project [2, 3]
proposes a points-to analysis together with a range of queries
for security and reliability as well as support for incremental
code loading. Gulfstream [3] is a successor of the Gatekeeper
project whose focus is on incremental analysis and dynamic
code loading. Sridharan et al. [16] presents a technique for
tracking correlations between dynamically computed prop-
erty names in JavaScript programs. Their technique allows
them to reason precisely about properties that are copied
from one object to another as is often the case in libraries
such as jQuery. Madsen et al. [7] proposes the idea of a
use analysis for the purposes of call graph construction in
JavaScript applications that use large frameworks and li-
braries. Their use analysis is combined with a points-to anal-
ysis for the rest of the application.

6. Conclusions

This paper proposes an alternative way of looking at what
constitutes a race in web applications written in JavaScript.
We advocate a focus on races that are caused by asyn-
chronous callbacks and their order of arrival, primarily in-
vestigating races produced by the XmlHttpRequest (XHR)
mechanism. Unlike prior work which concluded that there is
ample potential for races in JavaScript, our findings suggest
that given the forgiving nature of JavaScript applications,
damaging, persistent races are considerably more rare.

Nevertheless, we propose a lightweight algorithm that ex-
plores different schedules in the “neighborhood” of a partic-
ular runtime trace. Our approach avoids the imprecision of
static analysis and the combinatorial explosion and scala-
bility issues of runtime schedule exploration. We find and
investigate a total of 19 harmful races and 621 benign races
in 26 web sites.
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